Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease.

نویسندگان

  • Ivonne Robel
  • Julia Gebhardt
  • Jeroen R Mesters
  • Alexander Gorbalenya
  • Bruno Coutard
  • Bruno Canard
  • Rolf Hilgenfeld
  • Jacques Rohayem
چکیده

Sapovirus is a positive-stranded RNA virus with a translational strategy based on processing of a polyprotein precursor by a chymotrypsin-like protease. So far, the molecular mechanisms regulating cleavage specificity of the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the predicted forms of the viral protease, the 3C-like protease (NS6) and the 3CD-like protease-polymerase (NS6-7), were examined in vitro. The purified NS6 and NS6-7 were able to cleave synthetic peptides (15 to 17 residues) displaying the cleavage sites of the sapovirus polyprotein, both NS6 and NS6-7 proteins being active forms of the viral protease. High-performance liquid chromatography and subsequent mass spectrometry analysis of digested products showed a specific trans cleavage of peptides bearing Gln-Gly, Gln-Ala, Glu-Gly, Glu-Pro, or Glu-Lys at the scissile bond. In contrast, peptides bearing Glu-Ala or Gln-Asp at the scissile bond (NS4-NS5 and NS5-NS6, or NS6-NS7 junctions, respectively) were resistant to trans cleavage by NS6 or NS6-7 proteins, whereas cis cleavage of the Glu-Ala scissile bond of the NS5-NS6 junction was evidenced. Interestingly, the presence of a Phe at position P4 overruled the resistance to trans cleavage of the Glu-Ala junction (NS5-NS6), whereas substitutions at the P1 and P2' positions altered the cleavage efficiency. The differential cleavage observed is supported by a model of the substrate-binding site of the sapovirus protease, indicating that the P4, P1, and P2' positions in the substrate modulate the cleavage specificity and efficiency of the sapovirus chymotrypsin-like protease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and characterization of alpha 1-antichymotrypsin-like protease inhibitor that regulates prohormone thiol protease involved in enkephalin precursor processing.

Evidence is presented showing that alpha 1-antichymotrypsin (ACT) inhibits a novel prohormone thiol protease (PTP) involved in processing the enkephalin precursor. Colocalization of ACT immunoreactivity with PTP within isolated secretory vesicles of bovine adrenal medulla and pituitary indicated that endogenous ACT could regulate PTP in vivo. The endogenous 60 kDa bovine ACT (bACT)-like protein...

متن کامل

Structural Basis for Specific Recognition of Substrates by Sapovirus Protease

Sapovirus (SaV) protease catalyzes cleavage of the peptide bonds at six sites of a viral polyprotein for the viral replication and maturation. However, the mechanisms by which the protease recognizes the distinct sequences of the six cleavage sites remain poorly understood. Here we examined this issue by computational and experimental approaches. A structural modeling and docking study disclose...

متن کامل

Detection of proteolytic activity by fluorescent zymogram in-gel assays.

Proteases are involved in the regulation of many biological functions. This study describes a novel method for detecting protease activity by fluorescent zymogram in-gel protease assays, using SDS polyacrylamide gels copolymerized with a peptide-MCA (4-methyl-coumaryl-7-amide) substrate. This method allows simultaneous determination of protease cleavage specificity and molecular weight. Trypsin...

متن کامل

Further characterization of earthworm serine proteases: cleavage specificity against peptide substrates and on autolysis.

Cleavage specificity of two fibrinolytic enzymes from Lumbricus rubellus [Nakajima, N., et al., Biosci. Biotechnol. Biochem., 57, 1726-1730 (1993) and 60, 293-300 (1996)] was investigated using beta-amyloid 1-40 and oxidized insulin B-chain as peptide substrates. The serine protease, F-III-2, cleaved the former substrate at six sites, and the latter at five sites. F-II digested them at six and ...

متن کامل

The Autolysis of Human HtrA1 Is Governed by the Redox State of Its N-Terminal Domain

Human HtrA1 (high-temperature requirement protein A1) belongs to a conserved family of serine proteases involved in protein quality control and cell fate. The homotrimeric ubiquitously expressed protease has chymotrypsin-like specificity and primarily targets hydrophobic stretches in selected or misfolded substrate proteins. In addition, the enzyme is capable of exerting autolytic activity by r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 82 16  شماره 

صفحات  -

تاریخ انتشار 2008